

MEMO

TO:Mike Conger, P.E. (Knoxville TPO)FROM:Ben Swanson (RSG), Hadi Sadrsadat (RSG)DATE:September 23, 2020SUBJECT:Knoxville MOVES Post-Processor Documentation & User Guide

To effectively analyze air-quality impacts associated with transportation planning scenarios – including roadway and land-use changes – one needs both projections of transportation related changes (vehicle flows, congestion, and travel times) and a means to conduct the complex calculations required to estimate vehicle emissions. The former typically comes from a detailed travel model and the latter from EPA's **M**otor **V**ehicle **E**missions **S**imulator (MOVES).

To facilitate the Knoxville Regional Transportation Organization's transportation-related air quality assessments, RSG has constructed a tool (KRTM_to_MOVES) to post-process outputs from the Knoxville Regional Travel Model (KRTM) and to translate these into inputs required to run EPA's MOVES air-quality emissions model.

Part 1.0 of the following memorandum presents a User Guide to the KRTM_to_MOVES tool, folder structure, and instructions for use. Part 2.0 describes the 5 travel-related files generated by the Knoxville MOVES post-processor for direct use in Knoxville TPO MOVES model runs and documents underlying assumptions and methodology.

1.0 KRTM_TO_MOVES USER GUIDE

The KRTM_to_MOVES post-processor is run through the KRTM regional model userinterface in TransCAD. The tool uses regional model run outputs (as reported in the final assigned network .dbd files) to generate the following 5 input files needed to run MOVES.

- 1. hourVmtFraction.csv
- 2. avgSpeedDistribution.csv
- 3. rampFraction.csv
- 4. roadTypeDistribution.csv
- 5. HPMSvTypeYear.csv1

¹ Projected for future-year scenarios.

Input and output files for the KRTM_to_MOVES tool are located in a "MOVES" folder within the main KRTM model folder. Figure 1 illustrates the contents of this folder and the contents of the required inputs folder ("1_inputs_to_post").

Figure 2 presents a summary and description of all input files, as well as indication if they are user-defined defaults (default), user-specified in the KRTM model graphical user interface (gui), or generated by the KRTM_to_MOVES post-processor (pp).

File	Path	Description	Туре
[scenario_name].csv /1_inputs_to_post/Assigned_network		csv of KRTM model output network dvw	gui
hourly_distribution.csv	/1_inputs_to_post/Distributions	% of daily traffic by hour for rural and urban roads	default*
source_type_distribution.csv	source_type_distribution.csv /1_inputs_to_post/Distributions		default*
truck_spd_perc_by_hour.csv	/1_inputs_to_post/Distributions	restricted road truck speeds as fraction of auto speeds by hour	default**
[county].csv	/1_inputs_to_post/Distributions/cou nty_specific_hourly	county-specific % of daily traffic by hour for rural and urban roads	optional
2018_hpms_data.csv	/1_inputs_to_post/HPMS_by_FC	2018 HPMS VMT data by roadway functional class by county	default
calculated_base_year_adjustme nts.csv	/1_inputs_to_post/HPMS_by_FC	HPMS VMT scale factors calculated from base- year scenario	рр
2018_hpms_data_vtype.csv	/1_inputs_to_post/HPMS_by_vtype	2018 HPMS VMT by vehicle type by county	default
2018_model_vmt_by_vtype.csv	/1_inputs_to_post/HPMS_by_vtype	record of base-year VMT by vehicle type for use in projecting future HPMS VMT	рр
krtm_run_configuration.yaml	/1_inputs_to_post	config file generated by GUI to specify user inputs for KRTM_to_MOVES run	gui

FIGURE 2: INPUT FILE PATHS AND DESCRIPTIONS

gui: selected in the KRTM GUI

default: provided by the user and generally static

pp: generated by the post-processor

optional: user provided over-ride to default distributions

* carried over from previous KRTM MOVES post-processing

** calculated from 2018 NPRMDS data for Anderson, Blount, Knox, and Loudon Counties

To create MOVES input files with the KRTM_to_MOVES processor the user must first complete a full model run with the KRTM regional model. In the case of future-year

scenarios, the user must also have previously completed a full model run for the baseyear No-Build condition and have also run the KRTM_to_MOVES processor for that base-year scenario.

The KRTM_to_MOVES processor is run through the KRTM model GUI "MOVES Inputs" tab (Figure 3). The user is prompted to input values specific to the desired model run, as summarized in Figure 4.

FIGURE 3: KRTM GUI MOVES TAB

options	Mod	lel Run	Post Processo	
About	General	Settings	Netw	ork Scenari
MOVES Inp	puts	COVID-1	9	Help
reparing M	OVES Inputs			
Casarania N		-	_	
Scenario N				
Model Out	put Network	c		
		~	Browse	
Scenario Ve	ar			
Scenario Ye	ar	~		
Scenario Ye	ear	~		
Scenario Ye Select Stud	ar y Areas	~		
Scenario Ye	ear y Areas	~		
Scenario Ye	y Areas	~		
Scenario Ye	y Areas Sele	v ct Counties		
Scenario Ye	y Areas Sele	v v ct Counties		
Scenario Ye	y Areas Sele	<pre> </pre> ct Counties	Browse	1
Scenario Ye	y Areas Sele	<pre></pre>	Browse	
Scenario Ye	y Areas Sele ectory	ct Counties	Browse	

FIGURE 4: KRTM_TO_MOVES USER INPUT SUMMARY

Field	Values	Description
Scenario Name	string	Enter a desired name for the scenario run to be used in naming the output folder.
Model Output Network	network file path	Navigate to and select the desired model run output networkd dbd file.
Scenario Year	integer (>= 2018)	Enter the scenario run's analysis year as integer.
Study Areas	'General', 'PM25', 'O3'	Choose to process results for 'PM25' or 'O3' non- conformity areas, or 'General' to process results for all selected output counties regardless of conformity.
Counties	'Anderson', 'Blount', 'Jefferson', 'Knox', 'Loudon', 'Roane', 'Sevier', 'Union', 'Grainger', 'Hamblen'	If processing for general outputs (rather than PM25 or O3 non-comformity areas), select counties for which to generate MOVES input files.
MOVES Directory	folder path	Path to KRTM _to_MOVES folders within KRTM model.

Once user-inputs are selected, the KRTM_to_MOVES processor is run with a button push ("Generate MOVES Inputs") in the GUI, which launches the KRTM_to_MOVES.exe executable. This process creates output folders and files within the '2_created_for_moves' folder. A run-specific output folder named with the chosen "scenario_name" value is created and populated with sub-folders for all relevant counties – either relevant to the chosen non-conformity area or as selected by the user for a general run. A set of MOVES input files is then created for each county. A copy of the run-specific configuration file is saved in the main scenario output folder. For future-year runs, an additional .csv file is saved in the main scenario output folder with projected HPMS VMT values by county and by HPMS vehicle type ([scenario_year]_hpms_vmt.csv).

2.0 KRTM_TO_MOVES DOCUMENTATION

The KRTM_to_MOVES post-processor takes KRTM regional model outputs in the form of the final assigned network, combined with input distributions for hourly profiles and vehicle compositions to generate input files for the EPA MOVES emissions model.

The post-processor logic is divided into two-main components – first the tool collects the user-defined and default input files and translates the KRTM model run results into an extended table with hourly volumes, VMT, and speeds on each model link for each MOVES source type. The tool then filters this data table to include records only on relevant study-area links, based on the user's desired output (PM 2.5 area, ozone area, or user-specified counties) and creates the various MOVES input files separately for each county relevant to the desired output area.

2.1 KRTM_TO_MOVES DATA PROCESSING

Hourly Volumes

The processor takes daily assigned volumes on all model links and extends these to 24 hourly volumes based on user-defined daily profiles for urban and rural roadways, as recorded in the /1_inputs_to_post/Distributions/hourly_distribution.csv file. For this tool default hourly distributions were carried over from the previous Knoxville MOVES post-processor (PPSUITE). If the user has local data for any given county, these hourly distributions can be overridden by specifying county-specific hourly distributions in user-created distribution files saved in the

/1_inputs_to_post/Distributions/county_specific_hourly folder. Any such files should be named with the county name as the filename, saved as .csv, and be formatted as shown in Figure 5. For this file, and elsewhere in the processor, intermediate vehicle type classifications of "auto", "ltrk", and "truck" correspond to KRTM assignment types as follows:

• Auto: KRTM types XCAR, SOV, and HOV

- Itrk: KRTM type 4TCV
- truck: KRTM types SUTrk and MUTrk

FIGURE 5: EXAMPLE OF COUNTY-SPECIFIC HOURLY DISTRIBUTION FILE

	AutoSave 🤇		७ • ९	~ B ~	∱ ≏			erson.csv 👻
F	ile Hor	me Inse	ert Drav	w Page	e Layout	Formulas	Data	Review
ſ	≏ <u>1</u> X	Calibri	~ 11	• =	<u>= </u> = ≥	Gener	ral 🗸	🔛 Conditional
		BT	υ - Δ^	A =		~ ¢ ~	%	Eormat as Ta
P	aste					φ 60.0	10 /	
	~ 🔗		V v A v	· <u>+=</u>	<u>+=</u> %/ ~	Ìóŏ →	ŏ	How Cell Styles *
C	ipboard 5	ا الآ	Font	A kī	lignment	Num	nber 🖂	Styl
15		- : :	×	f_{x}				
	Δ	в	C	D	F	F	G	н
1	county	area	veh tvne	hour	hour fract	tion		
2	Anderson	rural	auto	1	0.010774			
2	Anderson	rural	auto	2	0.010774			
4	Anderson	rural	auto	2	0.006546			
5	Anderson	rural	auto	4	0.006635			
6	Anderson	rural	auto	5	0.009538			
7	Anderson	rural	auto	6	0.020055			
8	Anderson	rural	auto	7	0.04103			
9	Anderson	rural	auto	8	0.057972			
10	Anderson	rural	auto	9	0.053471			
11	Anderson	rural	auto	10	0.052548			
12	Anderson	rural	auto	11	0.055061			
13	Anderson	rural	auto	12	0.057674			
14	Anderson	rural	auto	13	0.059143			
15	Anderson	rural	auto	14	0.060802			
16	Anderson	rural	auto	15	0.065299			
17	Anderson	rural	auto	16	0.072608			
18	Anderson	rural	auto	17	0.077382			
19	Anderson	rural	auto	18	0.075482			
20	Anderson	rural	auto	19	0.058706			
21	Anderson	rural	auto	20	0.043986			
22	Anderson	rural	auto	21	0.035731			
23	Anderson	rural	auto	22	0.030743			
24	Anderson	rural	auto	23	0.023852			
25	Anderson	rural	auto	24	0.017318			
26	Anderson	rural	ltrk	1	0.010774			
27	Anderson	rural	ltrk	2	0.007644			
28	Anderson	rural	ltrk	3	0.006546			

HPMS Adjustment for Highways and Arterials

Base-year HPMS VMT data by county and by roadway functional class are used at two points in the data processing to adjust model output volumes to match HPMS control totals. The first HPMS adjustments are applied to highways and arterial roads prior to calculating hourly speeds. It is assumed that all interstates and arterial roads included in the HPMS VMT totals are also reflected in the KRTM model. This adjustment accounts for model error and is applied prior to calculating speeds to ensure control-total adjusted volumes are input to the speed calculations. A second round of HPMS adjustments is applied to ensure lower functional class VMT totals match HPMS control totals while not artificially impacting speeds due to any inconsistencies between the model network level of detail and the full HPMS network at the local level. Base-year HPMS VMT control

totals are provided in the /1_inputs_to_post/HPMS_by_FC/2018_hpms_data.csv file. Adjustment factors calculated for base-year runs are saved in the 1_inputs_to_post/HPMS_by_FC/calculated_base_year_adjustments.csv file and stored for application to future-year runs.

Hourly Speeds

With hourly volumes by link, the processor calculates hourly speeds for each link using the Bureau of Public Roads (BPR) equation and the KRTM model's link-specific parameters as presented below.

EQUATION 1: LINK TRAVEL-TIME BY HOUR

$$tt = afftime * (1 + \alpha * \left(\left(\frac{vol}{cap}\right)^{\beta}\right))$$

EQUATION 2: LINK SPEED BY HOUR

$$sp = \frac{\frac{L}{tt}}{60}$$

Where:

- tt = travel time (minutes)
- afftime = the KRTM model's calculated adjusted free-flow time (minutes)
- α = the KRTM model's link-specific alpha parameter
- ß = the KRTM model's link-specific beta parameter
- vol = the hourly volume as described above
- cap = the KRTM model's link-specific period capacity divided by the number of hours per period and mapped to the hourly volumes relevant to each period
- sp = speed (mph)
- L = link length (miles)

As a review, speed data from the National Performance Management Research Data Set (NPMRDS) for the counties of Anderson, Blount, Knox, and Loudon were compared with projected values. Because the NPMRDS data is associated with a network inconsistent with the KRTM model network in terms of link designations, break points and topography, a direct link-by-link comparison is not possible without significant effort to conflate the two networks. However, a high-level comparison can be done between average speeds by county, functional class, and hour between the two sets – understanding that the underlying set of links, link lengths, and break points differs between the two sets. As shown in Figure 6, the projected speeds in this comparison correlate well with NPMRDS data, particularly for the higher functional class roadways where the two networks and sets are most robust.

FIGURE 6: COMPARISON OF PROJECTED SPEEDS AND NPMRDS DATA

Hourly Volumes by MOVES Source Type

The processor disaggregates hourly volumes into the 13 MOVES source types. This is accomplished by first disaggregating to three aggregated model-specific vehicle types of auto, ltrk, and truck (KRTM component assignment types described above) based on the proportion of vehicle-type specific model VMT by county and roadway type, and then disaggregating hourly flows further to the 13 MOVES source type categories using default distributions provided as input in the

/1_inputs_to_post/Distributions/source_type_distribution.csv file. Default source type distributions by model vehicle type by hour were carried over from the previous Knoxville MOVES post-processor (PPSUITE).

veh_type	SID	ROADTYPE	HOUR01	HOUR02	HOUR03	HOUR04	HOUR05	HOUR06	HOUR07	HOUR08	HOUR09	HOUR10
auto	11	2	1	1	1	1	1	0.932	0.932	0.932	0.932	0.932
auto	21	2	99	99	99	99	99	99.068	99.068	99.068	99.068	99.068
auto	31	2	0	0	0	0	0	0	0	0	0	(
auto	32	2	0	0	0	0	0	0	0	0	0	(
auto	41	2	0	0	0	0	0	0	0	0	0	(
auto	42	2	0	0	0	0	0	0	0	0	0	(
auto	43	2	0	0	0	0	0	0	0	0	0	(
auto	51	2	0	0	0	0	0	0	0	0	0	(
auto	52	2	0	0	0	0	0	0	0	0	0	(
auto	53	2	0	0	0	0	0	0	0	0	0	(
auto	54	2	0	0	0	0	0	0	0	0	0	(
auto	61	2	0	0	0	0	0	0	0	0	0	(
auto	62	2	0	0	0	0	0	0	0	0	0	(
ltrk	11	2	0	0	0	0	0	0	0	0	0	(
ltrk	21	2	0	0	0	0	0	0	0	0	0	(
ltrk	31	2	75	75	75	75	75	74.957	74.957	74.957	74.957	74.95
ltrk	32	2	25	25	25	25	25	25.043	25.043	25.043	25.043	25.043
ltrk	41	2	0	0	0	0	0	0	0	0	0	(
ltrk	42	2	0	0	0	0	0	0	0	0	0	(
ltrk	43	2	0	0	0	0	0	0	0	0	0	(
ltrk	51	2	0	0	0	0	0	0	0	0	0	(
ltrk	52	2	0	0	0	0	0	0	0	0	0	(
ltrk	53	2	0	0	0	0	0	0	0	0	0	(
ltrk	54	2	0	0	0	0	0	0	0	0	0	(
ltrk	61	2	0	0	0	0	0	0	0	0	0	(
ltrk	62	2	0	0	0	0	0	0	0	0	0	(
truck	11	2	0	0	0	0	0	0	0	0	0	(
truck	21	2	0	0	0	0	0	0	0	0	0	(
truck	31	2	0	0	0	0	0	0	0	0	0	(
truck	32	2	0	0	0	0	0	0	0	0	0	(
truck	41	2	1	1	1	1	1	1.152	1.148	1.157	1.16	1.207
truck	42	2	0	0	0	0	0	0	1.457	1.252	1.178	0.379
truck	43	2	0	0	0	0	0	4.883	3.799	3.263	3.072	(
truck	51	2	1	1	1	1	1	0.641	0.639	0.644	0.646	0.672
truck	52	2	30	30	30	30	30	28.921	28.808	29.033	29.113	30.29

FIGURE 7: VIEW OF SOURCE TYPE DISTRIBUTION INPUT FORMAT

Heavy Vehicle Speed Adjustments

On unrestricted roadways where passenger vehicles and trucks are free to travel at differing speeds, post-processed hourly speeds are adjusted to reflect these differences for heavy vehicle source-types. Heavy vehicle speed adjustments are provided as inputs in the form of % of auto speeds by hour and are based on weighted average of data from the National Performance Management Research Data Set (NPMRDS) for the counties of Anderson, Blount, Knox, and Loudon. Adjustments are located in the /1_inputs_to_post/Distributions/truck_spd_perc_by_hour.csv file

FIGURE 8: NPMRDS TRUCK SPEED AS PERCENT OF AUTO - URBAN HIGHWAYS

FIGURE 9: NPMRDS TRUCK SPEED AS PERCENT OF AUTO - RURAL HIGHWAYS

2.2 KRTM_TO_MOVES MOVES FILE CREATION

Once hourly volumes and speeds are established for each model link and source type, the KRTM_to_MOVES processor filters the data for links relevant to the desired output area – either PM 2.5 non-conformity area, ozone non-conformity area, or generally by specified counties, and then calculates the following 5 MOVES input files on the remaining relevant links by county. Output files are stored in the /2_created_for_moves/ folder within an output folder named with the "Scenario Name" parameter provided through the GUI. The post-processor generates sub-folders for each county of relevance and stores output .csv files within each.

ITEM 1: hourVmtFraction.csv

Percent VMT by hour for each source type, road type, day ID² combination.

	А	В	С	D	
1	sourceTypeID	roadTypeID	hourID	hourVMTFraction	
2	11	2	1	0.01134351	
3	11	2	2	0.008039609	
4	11	2	3	0.006881134	
5	11	2	4	0.006969331	
6	11	2	5	0.010021945	
7	11	2	6	0.019680758	
8	11	2	7	0.038442965	
9	11	2	8	0.054368599	
10	11	2	9	0.050109838	
11	11	2	10	0.051587272	
12	11	2	11	0.05402439	
13	11	2	12	0.056610577	
14	11	2	13	0.058073091	
15	11	2	14	0.059688706	
16	11	2	15	0.064102615	
17	11	2	16	0.071297057	
18	11	2	17	0.084034006	
19	11	2	18	0.081996698	
20	11	2	19	0.063767926	
21	11	2	20	0.043206789	
22	11	2	21	0.035091348	
23	11	2	22	0.030207049	
24	11	2	23	0.023438912	
25	11	2	24	0.017015874	
26	11	3	1	0.011402096	
27	11	3	2	0.008089625	

FIGURE 10: HOURVMTFRACTION.CSV EXAMPLE

ITEM 2: avgSpeedDistribution.csv

Percent distribution of VHT by 16 speed bins by road type, source type, and day ID³.

² This is developed for dayID = 5 (weekday). ³ This is developed for dayID = 5 (weekday).

	А	В	С	D	E	
1	sourceTypeID	roadTypeID	hourDayID	avgSpeedBinID	avgSpeedFraction	
8162	31	4	75	1	0	
8163	31	4	75	2	0	
8164	31	4	75	3	0.000370588	
8165	31	4	75	4	0.000969426	
8166	31	4	75	5	0.012528548	
8167	31	4	75	6	0.028508701	
8168	31	4	75	7	0.010155494	
8169	31	4	75	8	0.087199402	
B170	31	4	75	9	0.000751039	
8171	31	4	75	10	0.002295098	
B172	31	4	75	11	0.012844846	
8173	31	4	75	12	0.062635928	
B174	31	4	75	13	0.05963073	
8175	31	4	75	14	0.588233466	
8176	31	4	75	15	0.133876733	
8177	31	4	75	16	0	
8178	31	4	85	1	0	

FIGURE 11: AVGSPEEDDISTRIBUTION.CSV EXAMPLE

ITEM 3: rampFraction.csv

Percent of restricted VHT on ramps for urban and rural roadways (MOVES road types 2 and 4).

FIGURE 12: RAMPFRACTION.CSV EXAMPLE

	А	В
1	roadTypeID	rampFraction
2	2	0.013053628
3	4	0.127860555

ITEM 4: roadTypeDistribution.csv

Percent of overall network VMT on each of the four MOVES road types.

FIGURE 13: ROADTYPEDISTRIBUTION.CSV EXAMPLE

	A	В	С	
1	sourceTypeID	roadTypeID	roadTypeVMTFraction	
2	11	2	0.026988447	
3	11	3	0.027418011	
4	11	4	0.350662398	
5	11	5	0.594931145	
6	21	2	0.026973569	
7	21	3	0.027402368	
8	21	4	0.350679584	
9	21	5	0.594944478	
10	31	2	0.005029446	
11	31	3	0.021605747	
12	31	4	0.290554516	
13	31	5	0.682810291	
14	32	2	0.005029434	

ITEM 5: HPMSvTypeYear

Total VMT by HPMS vehicle type for a given scenario year. This file is given as input for base-year scenarios (\1_inputs_to_post\HPMS_by_vtype\2018_hpms_data_vtype.csv) and is calculated based on growth in auto, single-unit truck, and multi-unit truck VMT by county observed in the KRTM model between the base year and scenario year. Future-year projected values are saved in the main scenario output folder with a filename based on the analysis year ([scenario_year]_hpms_vmt.csv).⁴

	Α	В	С	D	E	F
1	County	HPMSVTypeID	yearID	HPMSBaseYearVMT	growth	HPMS2026VMT
2	Anderson	10	2018	6881345	1	6881345
3	Anderson	25	2018	843819410	1	843819410
4	Anderson	40	2018	677075	1	677075
5	Anderson	50	2018	18228100	1	18228100
6	Anderson	60	2018	67099775	1	67099775
7	Blount	10	2018	7996420	1	7996420
8	Blount	25	2018	1181311185	1	1181311185
9	Blount	40	2018	458075	1	458075
10	Blount	50	2018	21590845	1	21590845
11	Blount	60	2018	43263450	1	43263450
12	Knox	10	2018	33790605	1	33790605
13	Knox	25	2018	5587211950	1	5587211950
14	Knox	40	2018	4915090	1	4915090
15	Knox	50	2018	122615180	1	122615180
16	Knox	60	2018	484040370	1	484040370
17	Loudon	10	2018	6125795	1	6125795
18	Loudon	25	2018	760606710	1	760606710
19	Loudon	40	2018	981485	1	981485
20	Loudon	50	2018	19776065	1	19776065
21	Loudon	60	2018	95839510	1	95839510
22	Roane	10	2018	5056345	1	5056345
23	Roane	25	2018	659373960	1	659373960
24	Roane	40	2018	786575	1	786575
25	Roane	50	2018	16833070	1	16833070
26	Roane	60	2018	77411755	1	77411755
27						

FIGURE	14: [SCENARIO	YEAR1 HPMS	VMT.CSV EXAMPLE

⁴ Example created running a "future" year scenario with a base-year network so no growth is shown this is figure. Actual future-year network runs will include growth factors and scaled future-year VMT values.